Save 5% on any 2013 multi-day course when you register with promo code 13TRNPLMT

Safety Training
Protecting people and assets in automation environments

Setting the Standard for Automation™
Expert-led training with real-world application from a global leader in automation and control training

Process safety and preventing catastrophic accidents is a critical concern for all manufacturing and process plant employees. The International Society of Automation (ISA) is a world leader in training automation and control professionals on the proven safety standards, technologies, and procedures that can identify and mitigate safety hazards in industrial environments.

ISA has been at the forefront of developing safety standards in manufacturing and process industries for decades. In 1986, ISA first released the ISA84 standard: Functional Safety—Safety Instrumented Systems (SIS) for the Process Industry Sector, which enables manufacturers to systematically and continuously identify, reduce, and manage process safety risks. A series of ISA84 (IEC 61511) standards has since been developed, further improving functional safety throughout the world, particularly in the chemical, petrochemical, and oil and gas industries, thus reversing the trend of dangerous failures in industrial automation.

During this time, ISA also introduced several other vital automation standards to improve safety in fossil fuel plants and in the operation of burner management systems (ISA77) and nuclear power facilities (ISA67). To boost awareness about the need for plant safety and increase compliance with sound safety practices, ISA offers a wide variety of training courses, as well as certificate programs, focused directly on ISA and other well-accepted industry safety standards.

ISA is continually broadening and strengthening its safety-centric instructional and educational resources. From process safety fundamentals and SIS design to advanced Safety Integrity Level selection and verification—and everything in between—ISA covers plant safety from every angle and across all systems, disciplines, and topics including:

- Abnormal Condition Management
- Alarm Management
- Burner Management
- Engineering/Procurement/Construction
- Fire and Gas
- Field Devices
- Machinery
- Nuclear
- Offshore
- Pipeline
- Security
- Software
- Tank Farms
- Wireless

ISA’s world-renowned safety experts provide the comprehensive, practical instruction needed to immediately apply knowledge in the workplace, and through a wide variety of learning formats.

All ISA training courses provide relevant examples and case histories, further reinforcing the practical and real-world work environment. To ensure flexibility and to meet varying customer needs, ISA offers safety training at a variety of locations: at ISA headquarters in North Carolina, at ISA’s many regional training centers, onsite directly at customer facilities, and online via distance learning.

Who is ISA?
Founded in 1945, ISA is a global organization that serves automation and control professionals through standards development, certification, education and training, technical publications, and technical conferences and events. To learn more about ISA, visit www.isa.org.

ISA Training: World-class subject-matter expertise
ISA’s courses are known and respected worldwide for their unbiased, practical approach to technology application. For more than 65 years, ISA has built on its proven track record of identifying and providing the real-world resources needed by organizations and automation and control professionals by working with leading content experts to deliver rapid, customized solutions.

Taking an ISA training course will:
- Enhance on-the-job training
- Fill in missing knowledge gaps
- Teach you the How’s and Why’s
- Provide continuing education credits
- Expand your professional network
- Give you access to industry experts
Table of Contents

- Safety Instrumented Systems—Design, Analysis, and Justification—Classroom (EC50) .. 4
- Safety Instrumented Systems—Design, Analysis, and Justification—Online (EC50E) .. 5
- Learn the Safety standard Changes for Design and Implementation of Safety Instrumented Systems (SIS)! Understanding Changes in IEC 61511 (EC51VID) .. 6
- Advanced Safety Integrity Level (SIS) Selection (EC52) .. 7
- Advanced Design and SIL Verification (EC54) ... 8
- Safety Certificate Program Information .. 9
- Fire and Gas System Engineering—Performance Based Methods for Process Facilities (EC56P) ... 10
- Boiler Control Systems Engineering (ES15) .. 11
- Burner Management Systems Engineering Using NFPA Code 85 and ANSI/ISA77 Standards (ES16) ... 12
- Applying Instrumentation in Hazardous (Classified) Locations (ES10) ... 13
- Applying Instrumentation in Hazardous Locations—Online (ES10E) ... 14
- ANSI/ISA-67.04-206: Setpoints for Nuclear Safety-Related Instrumentation (IC68P) — onsite offering only ... 15

Save with ISA’s Multi-Registration Rate!

When you register for more than one course offering in a single registration—whether you are registering yourself for two or more different courses, or registering you and at least one colleague for either the same or a different course—the ISA Multi-Registration rate can be applied to the additional registrations. Learn more at www.isa.org/Training/MultiReg.

Register or learn more at www.isa.org/SAFE
Safety Instrumented Systems—Design, Analysis, and Justification—Classroom* (EC50)

This course focuses on the engineering requirements for the specification, design, analysis, and justification of safety instrumented systems (SIS) for the process industries. You will learn how to determine Safety Integrity Levels (SILs) and evaluate whether proposed or existing systems meet the performance requirements.

YOU WILL BE ABLE TO:
• Implement the ISA/IEC 61511 standard
• Calculate SILs using a variety of techniques
• Analyze the performance of various sensor, logic, and final element configurations, as well as the impact of diagnostics, test intervals, common cause, system size, and more
• Calculate optimum system test intervals
• Apply the documentation requirements for process safety management, regulations, and industry standards
• And more...

YOU WILL COVER:
• Guidelines and Standards
• General SIS Design Considerations
• Hazard and Risk Assessment
• System Technologies
• Operations and Maintenance
• And more...

CLASSROOM/LABORATORY EXERCISES:
• Calculate device failure rates and determine safe vs. dangerous performance
• Model the impact of field devices, automatic diagnostics, manual test intervals, common cause, and more
• Determine the SIL of a sample process and design a SIS to meet the performance requirements

COURSE DETAILS:
Course No.: EC50
Length: 4.5 days
CEUs: 3.2 (32 PDHs)
Price: 3,100 USD ISA Member
3,465 USD Affiliate Member
3,830 USD Community Subscriber/List
3,100 USD Group Rate

Includes ISA Text: Safety Instrumented Systems: A Lifecycle Approach by Paul Gruhn, P.E., CFSE and Simon Lucchini, CFSE, MIEAust CPEng—128 USD Value

“Simply reading a book or the standard on SIS design is no guarantee of understanding. This ISA training course is a useful way for someone to show their qualifications in SIS.”
—Paul Gruhn, P.E., ISA Instructor

2019 SCHEDULE
Houston, TX.......................... 4–8 February
17–21 June
21–25 October
Research Triangle Park, NC......... 18–22 March
25–29 November
Englewood, CO 19–23 August

ISA/IEC 61511 CERTIFICATE 1 PROGRAM PRICE*:
Course registration includes exam fee

Register Now

Register or learn more at www.isa.org/SAFE
Safety Instrumented Systems—Design, Analysis, and Justification—Online* (EC50E)

This online, instructor-assisted course focuses on the engineering requirements for the specification, design, analysis, and justification of safety instrumented systems (SIS) for the process industries. Students will learn how to determine safety integrity levels (SILs) and evaluate whether proposed or existing systems meet the performance requirements.

YOU WILL BE ABLE TO:
- Differentiate between process control and safety control
- Implement the ISA-84 standard (IEC 61511)
- Evaluate process risk levels
- Determine SILs using a variety of techniques
- Analyze the performance of different logic system technologies
- Analyze the performance of various sensor, logic, and final element configurations, as well as the impact of diagnostics, test intervals, common cause, system size, and more
- Determine optimum system test intervals
- Specify and select SIS
- Satisfy the documentation requirements for process safety management, regulations, and industry standards

YOU WILL COVER:
- Week 1/Module 1: Introduction and Background
- Week 2/Module 2: Hazard, Risk Assessment, and Determining SIL
- Week 3/Module 3: Layer of Protection Analysis—LOPA
- Week 4/Module 4: Reliability and Modeling Issues
- Week 5/Module 5: Logic System Technologies
- Week 6/Module 6: Field Devices and Their Impact
- Week 7/Module 7: Installation and Beyond
- Week 8: Final Course Examination

COURSE DETAILS:
Course No.: EC50E
CEUs: 3.5 (35 PDHs)
Price: 3,100 USD ISA Member
3,465 USD Affiliate Member
3,830 USD Community Subscriber/List
3,100 USD Group Rate

Includes ISA Text: Safety Instrumented Systems: A Lifecycle Approach by Paul Gruhn, P.E., CFSE and Simon Lucchini, CFSE, MIEAust CPEng—128 USD Value

*See page 9 for details.
Learn the Safety standard Changes for Design and Implementation of Safety Instrumented Systems (SIS)!

Understanding Changes in IEC 61511 (EC51VID)

This online, on demand course is a pre-recorded video format taught by a subject matter expert that explains the changes in safety systems standard IEC 61511. The course discusses what the changes in the standard are and how they will impact SIS design and implementation work practices moving forward. It will bring an SIS practitioner that is familiar with the 2003 version of the standard up-to-date with the current standard in the most efficient way possible. A variety of online learning activities including flashcards, knowledge checks, pre- and post- quizzes, and a workbook/study guide are in the course.

KEY BENEFITS INCLUDE:
• Rapid and efficient ramp up to the current version of a standard that many people are already working with.
• Quick reference for changes between the latest version of the standard and the older version.

YOU WILL COVER:
• Overview, Scope and References
• Terms, Definitions, and Abbreviations
• Management of Functional Safety
• Safety Lifecycle and Verification
• And much more…

WHO SHOULD ATTEND:
• Participants in EC50 prior to August of 2018
• SIS Engineers
• Instrumentation and Control Engineers
• Instrumentation and Control Maintenance
• Engineering Management
• Maintenance Management

COURSE PREREQUISITES:
Understanding and Experience with SIS design using the 2003 version of IEC 61511 or the 2004 version of ISA 84.00.01.

CLASSROOM/LABORATORY EXERCISES:
• Pre-Instructional Survey
• Quizzes at the end of all eleven sections
• Interactive Activity
• Post-Instructional Survey

COURSE DETAILS:
Course No.: EC51VID
Length: 6 hours
CEUs: .6
Course Hours: On-demand Video Course

2019 SCHEDULE
On-demand video

Register or learn more at www.isa.org/SAFE
Advanced Safety Integrity Level (SIL) Selection* (EC52)

This course focuses on hands-on examples of safety integrity level (SIL) selection using a variety of different techniques. Students will be better able to save their companies time and money through the optimization of system performance requirements.

YOU WILL BE ABLE TO:
• Develop and implement different SIL selection techniques within your organization
 – Risk matrix
 – Risk graph
 – Layer Of Protection Analysis (LOPA)
• Determine the appropriate level of performance needed of your safety systems
• Help prevent over- or under-designing the system requirements to save your organization time and money

YOU WILL COVER:
• Determination of the Appropriate Level of Performance Needed for Your Safety Systems
• Prevention of System Requirements Over- or Under-Design
• SIL Selection Hands-on Examples

CLASSROOM/LABORATORY EXERCISES:
• Multiple application exercises of SIL selection
• Students are encouraged to bring their own examples to cover in class

COURSE DETAILS:
Course No.: EC52
Length: 2 days
CEUs: 1.4
Price:
1,640 USD ISA Member
1,840 USD Affiliate Member
2,000 USD Community Subscriber/List
1,640 USD Group Rate

Includes ISA Standard: ANSI/ISA-84.00.01-2004 Parts 1–3—850 USD Value

Recommended Resource:
ISA Text: Safety Integrity Level Selection—Systematic Methods Including Layer of Protection Analysis by Edward M. Marszal, P.E. and Dr. Eric W. Scharpf, MIPENZ

*See page 9 for details.

Save on training when you join ISA!
ISA members save 20% and ISA Automation Affiliate members save 10% on the Community Member/List price for all ISA training courses and products.

2019 SCHEDULE
Houston, TX.........................18–19 February
24–25 June
28–29 October
Research Triangle Park, NC..............25–26 March
2–3 December
Englewood, CO26–27 August

ISA/IEC 61511 CERTIFICATE 2 PROGRAM PRICE*:
Course registration includes exam fee

Register Now
Advanced Design and SIL Verification* (EC54)

This course focuses on more detailed design issues and further hands-on examples of system analysis/modeling. You will be better able to perform system design and analysis, thus saving your company time and money in optimizing system designs.

YOU WILL BE ABLE TO:
• Analyze any system technology and configuration to see if it will meet the required safety integrity level (SIL)
• Determine if existing systems are safe enough (or whether they need to be upgraded) and whether proposed systems will meet the performance requirements
• Determine the optimum manual test interval for any system, saving your company time and money by not over- or under-testing systems

YOU WILL COVER:
• System Modeling/Analysis Hands-On Advanced Examples
• Detailed Design Topics

CLASSROOM/LABORATORY EXERCISES:
• Multiple application exercises of system modeling/analysis

COURSE DETAILS:
Course No.: EC54
Length: 2 days
CEUs: 1.4
Price:
1,640 USD ISA Member
1,840 USD Affiliate Member
2,000 USD Community Subscriber/List
1,640 USD Group Rate

Includes ISA Standard: ANSI/ISA-84.00.01-2004 Parts 1–2—600 USD Value

Textbook included:
Safety Instrumented Systems Verification—Practical Probabalistic Calculations
by William M. Goble and Harry Cheddie, P.E., CFSE

*See page 9 for details.

“This course showed the relationship and impact different architectures and designs have on functional safety. Also, the exercises helped reinforce the course content.”
—EC54 Student

2019 SCHEDULE
Houston, TX 20–21 February;
26–27 June
Research Triangle Park, NC 27–28 March

ISA/IEC 61511 CERTIFICATE 3 PROGRAM PRICE*:
Course registration includes exam fee
ISA and the Automation Standards Compliance Institute (ASCI) offer three certificate programs that will increase knowledge and awareness of the ISA/IEC 61511 standard.

Each certificate program includes specialized training on ISA/IEC 61511 and an exam that is offered through the Prometric testing centers. Those who register for the training course and the certificate program and pass the exam will be issued an ISA certificate specifying that they have successfully completed that certificate program.

Certificate 1:
ISA/IEC 61511 SIS Fundamentals Specialist
This certificate requires the completion of the four-day instructor-led ISA training course EC50 with exam (or the online, instructor-assisted version, EC50E, with exam). This Certificate is required to apply for Certificate 2 and Certificate 3. No application required.

Certificate 2:
ISA/IEC 61511 SIL Selection Specialist
This certificate requires the completion of the two-day instructor-led ISA training course EC52 with exam. Certificate 1 is a prerequisite. Application required.

Certificate 3:
ISA/IEC 61511 SIL Verification Specialist
This certificate requires the completion of the two-day instructor-led ISA training course EC54 with exam. Certificate 1 is a prerequisite. Application required.

ISA/IEC61511 SIS Expert
Individuals who achieve Certificates 1, 2, and 3 are designated as ISA/IEC 61511 Safety Instrumented Systems (SIS) Experts.

Learn more about these certificate programs, eligibility criteria, renewal, and upcoming courses at www.isa.org/ISA/IEC61511Certificate.
Fire and gas detection and suppression system design techniques that are currently in use are often considered to be unsatisfactory due to their nature of being rule-of-thumb and experience-oriented without any real ability to quantify risk. This has resulted in systems that are either over- or under-designed. The development of ISA-TR-84.00.07 resulted in a comprehensive framework for performance-based fire and gas design. This course describes the techniques recommended in this technical report, along with hands-on use of the techniques and associated software tools. This course is designed for all audiences from high-level decision makers and users of FGS.

YOU WILL BE ABLE TO:
• Explain the scope of fire and gas engineering for process facilities and the myriad of related standards, regulations, and requirements
• Identify the fire and gas system design methods and guidelines that are currently available including their strengths and limitations
• Explain the Safety Lifecycle (per IEC 61511/ISA84 and ISA-TR84.00.07) and how they can provide a framework for functional safety of Fire and Gas Systems
• Identify and define the fire and gas zones along with the hazards contained in those zones
• Apply statistical analysis, industry databases, and data integration techniques to assess the likelihood of Fire and Gas System relevant events
• Assess the tolerability of the risk posed by a process facility before and after application of fire and gas detection and suppression systems using risk integration techniques
• And more…

YOU WILL COVER:
• Introduction: Overview and Definitions
• Fire and Gas Hazards
• Zone Definition
• Detector Coverage Assessment

CLASSROOM/LABORATORY EXERCISES:
• Case study employing software to develop a complete performance-based design for a sample oil and gas production facility
• Performance requirement selection using both fully quantitative and semi-quantitative approaches

COURSE DETAILS:
Course No.: EC56P
Length: 3 days
CEUs: 2.1
Price: 1,560 USD ISA Member
 1,755 USD Affiliate Member
 1,955 USD Community Subscriber/List
 1,560 USD Group Rate

2019 SCHEDULE
Houston, TX 26–28 February; 7–9 May; 26–28 August; 5–7 November
Boiler Control Systems Engineering (ES15)

This course covers boiler components and their purpose. Additionally, the course explains the ISA symbols used in boiler control, how to identify the engineering and control of boilers using these symbols, and a method of presenting the engineering. This course covers topics including defining the control and ratio control fundamentals, feed forward control, feed forward plus feedback control, cascade control, ratio control, and how all of these are implemented in boiler control. Also reviewed are proportional control, proportional plus reset control, proportional plus reset plus derivative control, what all of these are, and how they are used. Flame detection methods, including the advantages of each method, are also covered.

YOU WILL BE ABLE TO:
• Identify the benefits of improved boiler process control and savings from improved efficiency
• Develop proper control systems documentation
• Apply principles and methods for flow and level measurements to improve boiler operations
• Apply control concepts such as cascade, ratio, and feedforward control for boiler control
• Evaluate process requirements for writing instrumentation specifications
• And more...

YOU WILL COVER:
• Basic Control Loops
• Combustion of Fuels
• Steam Supply and Firing Rate Demand
• Feedwater Control Systems
• Improving Operations with Computers and Analyzers
• And more...

CLASSROOM/LABORATORY EXERCISES:
• Develop piping and instrumentation diagrams (P&IDs) for gas, oil, and pulverized coal
• Review methods of efficiency calculations
• Use PC software to simulate boiler start-up and drum level control
• Tune a boiler control system for maximum efficiency
• And more...

COURSE DETAILS:
Course No.: ES15
Length: 3 days
CEUs: 2.1
Price:
 - 1,560 USD ISA Member
 - 1,755 USD Affiliate Member
 - 1,955 USD Community Subscriber/List
 - 1,560 USD Group Rate

Recommended Resource:

Save on training when you join ISA!
ISA members save 20% and ISA Automation Affiliate members save 10% on the Community Member/List price for all ISA training courses and products.

Register or learn more at www.isa.org/SAFE

2019 SCHEDULE
Newark, DE ... 8–10 April
RTP, NC .. 7–9 October

Register Now
Burner Management Systems Engineering Using NFPA Code 85 and ANSI/ISA77 Standards (ES16)

This course covers the safe start-up, monitoring, and shut-down of multiple burner boiler furnaces. This course also discusses causes of furnace explosions and the relationship between burner management systems (BMS) and boiler control systems.

Prior attendance at ISA course ES15: Boiler Control Systems Engineering or an understanding of boilers and boiler control is assumed.

YOU WILL BE ABLE TO:
• Identify the primary cause of furnace explosions
• Apply NFPA 85 Code
• Implement flame failure protection for specific systems
• Design alarms, interlocks, and emergency shutdown systems
• Describe the function and use of the burner front, operator interfaces, and logic systems
• And more...

YOU WILL COVER:
• Burner Management Systems (BMS)
• NFPA 85 Code
• Boiler Components
• Programmable Controllers
• Logic Methods
• And more...

CLASSROOM/LABORATORY EXERCISES:
• Design piping and instrumentation diagrams (P&IDs) for gas, oil, and pulverized coal furnace systems
• Develop logic diagrams for igniter and switch settings
• Develop shut-down and permissive lists for single and multiple burners

COURSE DETAILS:
Course No.: ES16
Length: 2 days
CEUs: 1.4
Price: 1,440 USD ISA Member
1,620 USD Affiliate Member
1,800 USD Community Subscriber/List
1,440 USD Group Rate

“[This course provided] good knowledge of what NFPA 85 requires for BMS.”
—Brian Rychener, Electrical Engineer

Register Now

2019 SCHEDULE
Newark, DE......................................11–12 April
RTP, NC ...10–11 October

Register or learn more at www.isa.org/SAFE
Applying Instrumentation in Hazardous (Classified) Locations—Classroom (ES10)

This course provides a detailed, systematic approach to specifying and implementing instrumentation in hazardous locations. Related standards from National Fire Protection Association (NFPA), National Electrical Manufacturers Association (NEMA), International Electrotechnical Commission (IEC), American Petroleum Institute (API), and ISA are discussed.

YOU WILL BE ABLE TO:
- Interpret appropriate industry standards including those for NFPA, NEMA, IEC, API, and ISA
- Apply explosion-proof seals and enclosures
- Specify lightning protection for hazardous locations
- Assess the danger from spills of flammable liquids
- Select the proper NEMA/IEC enclosures for different location classifications
- And more...

YOU WILL COVER:
- Classification
 - Hazardous Area
 - Dust
 - Enclosure
 - Class II Division
 - Class III Division
- Intrinsic Safety
- Purging and Pressurization
- Grounding Considerations
- Protection Techniques Standards
- And more...

CLASSROOM/LABORATORY EXERCISES:
- Develop classification drawings
- Evaluate intrinsic safety systems using entity concept and circuit characteristics
- Analyze protective techniques for specified applications

COURSE DETAILS:
Course No.: ES10
Length: 2 days
CEUs: 1.4
Price: 1,440 USD ISA Member
 1,620 USD Affiliate Member
 1,800 USD Community Subscriber/List
 1,440 USD Group Rate

Includes ISA Standards and Technical Reports:
ANSI/ISA-12.01.01-2009, ANSI/ISA-RP12.06.01-2003, ANSI/ISA-12.12.01-2012,
and ISA-TR12.24.01-1998 (IEC 60079-10 Mod)—A 415 USD Value!

Register or learn more at www.isa.org/SAFE
Applying Instrumentation in Hazardous Locations—Online (ES10E)

This self-paced, online course provides a systematic approach to specifying and implementing instrumentation in hazardous locations. Related standards from National Fire Protection Association (NFPA), National Electrical Manufacturers Association (NEMA), International Electrotechnical Commission (IEC), American Petroleum Institute (API), and ISA are discussed.

YOU WILL BE ABLE TO:
- Identify process and environmental factors that determine classification
- Describe and use procedures for electrical classification
- Use applicable standards to develop classification drawings for gases, dusts, and fibers
- Describe the basic principles of protection
- Select explosion proof apparatus for specific applications
- And more…

YOU WILL COVER:

Pre-Exam
Students are asked to take the pre-exam, which includes questions related to the subject matter areas. Answers will be provided for students to assess their knowledge, prior to beginning the course material.

WEEK 1—Module 1: Introduction & Location Classification Standards
WEEK 2—Module 2: Class I Division & Zone Classification
WEEK 3—Module 3: Class I Zone (Alternative) & Class II Division Classifications
WEEK 4—Module 4: Class III Division & Zone Classification for Dusts and Module 5: Protection Technique Standards & Enclosure Types
WEEK 5—Module 6: Explosion Proof Enclosures & Module 7: Intrinsic Safety
WEEK 6—Module 8: Non-incendive Systems & Module 9: Pressurization & Purging
WEEK 7—Module 10: Other Types of Protection & Module 11: Maintenance Considerations
WEEK 8—Final Examination

CLASSROOM MATERIALS:
- Course notetset with slides from course modules and course syllabus

COURSE DETAILS:
Course No.: ES10E
Length: 8 Weeks
CEUs: 1.4
Price: 1,440 USD ISA Member
1,620 USD Affiliate Member
1,800 USD Community Subscriber/List
1,440 USD Group Rate

2019 SCHEDULE
Online 28 January–22 March
13 May–12 July
5 August–27 September
9 September–6 December

Register Now
ANSI/ISA-67.04-2006: Setpoints For Nuclear Safety-Related Instrumentation (IC68P)

The course will discuss the terminology and the appropriate use of the standard and the steps necessary for the development of safety-related setpoint analysis. ANSI/ISA-67.04.01 has been used as the basis for many plant specific setpoint programs and setpoint calculations. The changes to this standard should be reflected in all programs where compliance to NRC requirements is necessary.

YOU WILL BE ABLE TO:
- Define what constitutes a setpoint methodology
- Determine setpoint calculations including errors associated with measuring the process, the primary element, the instruments
- Methods of error combination and when each is proper
- State why ISA-RP67.04.02 was developed
- Identify the requirements for implementing a utility or plant specific methodology
- And more…

YOU WILL COVER:
- Terminology
- Error Relationships
- The Calculation Process
- And more…

COURSE DETAILS:
Course No.: IC68P
Length: 3 days
CEUs: 2.1
Price: 1,680 USD ISA Member
 1,890 USD Affiliate Member
 2,105 USD Community Subscriber/List
 1,680 USD Group Rate
Includes ISA Standard: ANSI/ISA-67.04.01-2006 (R2011)—A 45 USD Value

Register or learn more at www.isa.org/SAFE