Fundamentals of Industrial Control
2nd Edition
D. A. Coggan, Editor

Practical Guides for Measurement and Control

ISA—The Instrumentation, Systems, and Automation Society
Table of Contents

Preface ix
Contributors xi

Chapter 1 Sensors 1
Applications of Instrumentation 1
Introduction to Sensor Fundamentals 2
Standards of Measurement 10
Level Measurement 11
Pressure Measurement 31
Flow Measurement 63
Thermometers 96
Weight Measurement 141
Bibliography 150
About the Authors 152

Chapter 2 Analytical Instrumentation 153
General Measurement Principals For Analyzers 154
Analyzers Targeting Specific Stream Elements 160
Analyzers for Measuring Bulk Properties 188
References 199
About the Authors 200

Chapter 3 Chemical Process Control 201
Introduction 201
Responsibilities of a Process Control Engineer 202
Types of Process and Control Diagrams 203
Operator Acceptance 205
Control Loop Hardware 206
Characterizing Dynamic Behavior 214
PID Control: Fundamental Characteristics of Proportional, Integral, and Derivative Action 219
PID Tuning 223
Advanced PID Control 233
Control of MIMO Processes 243
Model Predictive Control 245
Case Studies 249
References 265
About the Author 265
Table of Contents

Chapter 4 Final Control Elements 267
- Control Valves and Actuators—An Introduction 267
- Pressure Differential 278
- Control Valve Sizing 280
- Trim Design 296
- Actuators 296
- Valve Positioners and Accessories 300
- Reversible Electric Motor Drives 307
- Solenoid Valves 307
- Electric Motor Drive Control 309
- Regulators, Relief Valves, and Other Control Elements 312
- Summary 320
- Bibliography 321
- About the Author 322

Chapter 5 Computer Technology 323
- The Digital Computer 323
- The Central Processing Unit (CPU) 326
- Computer Architecture: Components and Structure 329
- Computer Operating Environment 344
- Operating Systems 347
- Industrial Applications Software 358
- Artificial Intelligence 378
- Neural Networks 382
- Fuzzy Logic 389
- Case-Based Reasoning (CBR) 393
- Genetic Algorithms 395
- Combined Approaches 398
- Plant Floor Applications 398
- Communications 401
- Networks 411
- Enterprise Computing 440
- Internet 444
- References and Bibliography 454
- About the Authors 460

Chapter 6 Control System Theory 461
- The Transfer Function 461
- Open and Closed Loops 462
- Block Diagrams 464
- Modeling 466
- Block Diagram Reduction Techniques 470
- Signal Flow Graphs 472
- Differential Equations 476
- Transform Calculus Using the Laplace Transform 477
- System Response and Bode Diagrams 479
- Stability 494
- Performance Indices 500
- Compensation 500
- The Z-Transform 501
Table of Contents

State-Space Approach to Digital Control Systems 504
Predictive Control 507
Adaptive Control 508
Statistical Process Control 512
Expert Systems 513
Conclusion 514
References 515
About the Author 516

Chapter 7 Analog and Digital Control Devices 517
- Automatic Controllers 517
- Analog Controllers and Auxiliary Devices 519
- Pneumatic Auxiliary Devices 525
- Electric and Electronic Controllers 529
- Electronic Auxiliary Devices 534
- Digital Controllers and Auxiliary Devices 540
- References 550
- About the Authors 550

Chapter 8 Distributed Control Systems / Digital Automation Systems 551
- Introduction 551
- DCS Architecture 557
- DAS Defined 564
- System Architecture, Functionality, and Standards 565
- User Interfaces 575
- Basic DCS/DAS Software Modules and Functionality 581
- Installation 584
- Maintenance 594
- Purchasing Strategies 598
- Migration Solutions 600
- Conclusion 603
- References 603
- About the Authors 604

Chapter 9 Programmable Logic Controllers 605
- Introduction 606
- Principles of Operation 607
- PLCs versus Other Types of Controllers 608
- Ladder Logic Concepts 611
- Processors 618
- The Memory System 626
- The Analog I/O System 652
- Special Function Interfacing 659
- Programming Languages 664
- PLC System Documentation 668
- Implementing and Programming the PLC 676
- Guidelines for Installation, Startup, and Maintenance 685
- References 700
- About the Author 702
Table of Contents

Chapter 10 Ergonomics and Occupational Safety 703
- Ergonomics As a Science 703
- Information Ergonomics in Industrial Control 706
- Planning Control Centers 715
- Technical Personnel Training 727
- Occupational Safety 730
- Bibliography 736
- About the Author 736

Chapter 11 Project Management Strategies 737
- Standards 737
- Documentation 739
- Instrumentation Projects 753
- Engineering Phases 758
- Site Work 779
- Conclusion 781
- Bibliography 781
- About the Author 781

Appendix 1 Laboratory Standards 783
- Introduction to Laboratory Standards 783
 - Pressure 789
 - Temperature 807
 - Liquid Level 827
 - Miscellaneous 831
- About the Author 838

Appendix 2 Basics of Electricity and Electronics 839
- Electrons 839
- Direct Current 839
- Bridge Circuits 841
- Alternating Current 844
- Solid-State Electronics 848

Appendix 3 Basics of Chemistry 855
- Basic Definitions 855
- Valence 856
- Symbols, Formulas, and Equations 857
- Molecular Formulas and Percentage Composition 858
- Inorganic Chemistry 860
- Organic Chemistry 862

Index 865