About the Authors ix

Foreword xvii

Chapter 1 INTRODUCTION 1

Chapter 2 BACKGROUND AND HISTORICAL PERSPECTIVE 7

2.1 Plant Structure, 7

2.2 Plant Organization, 10

2.2.1 Process Areas, 10
2.2.2 Process Equipment, 11
2.2.3 Plant Operator, 13
2.2.4 Supporting Department, 15
2.2.5 Work Practices, 17

2.3 Early Control Systems, 18

2.4 Distributed Control Systems (DCS), 22

2.5 Operator Interface, 27

2.6 System Installation, 30

2.7 External System Interfacing, 34

2.8 Modern Control Systems, 36

2.9 The Impact of Standards, 39

Chapter 3 MEASUREMENTS 45

3.1 Magnetic Flowmeter, 46

3.2 Vortex Flowmeter, 48

3.3 Flow Based on Differential Pressure, 50
3.4 Coriolis Mass Flowmeter, 53
3.5 Pressure Measurement, 54
3.6 Temperature Measurement, 55
3.7 Level Measurement, 57
3.8 Other Measurement Techniques, 59

Chapter 4 ON-LINE ANALYZERS 61
4.1 Sampling vs. In-situ Analyzers, 61
4.2 Flue Gas O2, 62
4.3 Liquid Stream pH and ORP, 65
4.4 On-line Estimator, 65

Chapter 5 FINAL CONTROL ELEMENTS 67
5.1 Regulating Valves, 67
5.2 Damper Drives, 75
5.3 Variable Speed Drives, 76
5.4 Blocking Valves, 77

Chapter 6 FIELD WIRING AND COMMUNICATIONS 79
6.1 Traditional Device Installation, 79
6.2 HART Device Installation, 81
6.3 Fieldbus Device Installation, 83
6.4 WirelessHART Installation, 85

Chapter 7 CONTROL AND FIELD INSTRUMENTATION DOCUMENTATION 89
7.1 Plot Plan, 90
7.2 Process Flow Diagram, 91
7.3 Piping and Instrumentation Diagram, 92
7.4 Loop Diagram, 96
7.5 Tagging Conventions, 99
7.6 Line and Function Symbols, 106
7.7 Equipment Representation, 109
7.8 Documentation Examples, 110
 7.8.1 Example – Basic Neutralizer Control System, 110
 7.8.2 Example – Basic Column Control, 113
 7.8.3 Example – Batch Reactor Control System, 113
 7.8.4 Example – Continuous Feed and Recycle Tank, 115
Chapter 8 OPERATOR GRAPHICS 117
8.1 Display of Alarm Conditions, 120
8.2 Dynamic Elements, 121
 8.2.1 Dynamos, 121
8.3 Displays, 122
8.4 Process Performance Monitoring, 124
8.5 Process Graphic Data Interfaces, 125

Chapter 9 PROCESS CHARACTERIZATION 127
9.1 Process Structure, 127
9.2 Process Definition, 130
9.3 Pure Gain Process, 136
9.4 Pure Delay Process, 138
9.5 Pure Lag Process, 142
9.6 First Order Plus Deadtime Process, 144
9.7 Integrating Process, 146
9.8 Inverse Response Process, 149
9.9 Process Linearity, 150
9.10 Workshop Exercises – Introduction, 152
9.11 Workshop – Process Characterization, 154
 9.11.1 Workshop Directions, 154
 9.11.2 Workshop Review/Discussion, 156

Chapter 10 CONTROL SYSTEM OBJECTIVES 159
10.1 Economic Incentive, 160
 10.1.1 Ammonia Plant Example, 164
10.2 Safety, Environmental Compliance, Equipment Protection, 171
10.3 Balancing Complexity with Benefits, 173

Chapter 11 SINGLE-LOOP CONTROL 175
11.1 Manual Control, 175
 11.1.1 Implementation, 178
 11.1.2 I/O Processing, 179
 11.1.3 Analog Input, 183
 11.1.4 Status, 186
 11.1.5 Manual Loader Function Block, 187
 11.1.6 Analog Output, 188
11.2 Feedback Control, 191
 11.2.1 Proportional-Only Control, 193
11.2.2 Proportional-Integral (PI) Control, 195
11.2.3 Proportional-Integral-Derivative (PID) Control, 198
11.2.4 Control Structure, 199
11.2.5 Controller Action, 200
11.2.6 Back Calculation, 202

11.3 PID Block Implementation, 204
11.3.1 PID Form and Structure, 206
11.3.2 Mode, 208

11.4 Pulsed Outputs, 211
11.4.1 Duty Cycle Control, 211
11.4.2 Increase-Decrease Control, 215

11.5 Process Action, 216
11.6 Workshop – Feedback Control, 217

Chapter 12 TUNING AND LOOP PERFORMANCE 221
12.1 Initial Loop Tuning, 221
12.2 Manual Tuning, 223
12.3 Automatically Establishing Tuning, 227
12.3.1 Auto-tuning Application, 228
12.3.2 Simulation of Response, 230
12.4 Commissioning – Sticky Valves and Other Field Challenges, 232
12.5 Characterizing Loop Gain, 237
12.6 Pairing of Parameters, Decoupling, 241
12.7 Workshop – PID Tuning, 243
12.8 Workshop Discussion, 245

Chapter 13 MULTI-LOOP CONTROL 247
13.1 Feedforward Control, 247
13.1.1 Dynamic Compensation, 249
13.1.2 Alternate Implementations, 253
13.1.3 Workshop – Feedforward Control, 256
13.1.4 Workshop Discussion, 258
13.2 Cascade Control, 260
13.2.1 Benefits, 262
13.2.2 Example – Superheater Temperature Control, 263
13.2.3 Implementation, 265
13.2.4 Workshop – Cascade Control, 267
13.3 Override Control, 268
13.3.1 Override Operation, 269
13.3.2 Example – White Liquor Clarifier, 270
13.3.3 Example – Compressor, 271
13.3.4 Implementation, 272
13.3.5 Workshop – Override Control, 273
13.3.6 Workshop Discussion, 274
13.4 Control Using Two Manipulated Parameters, 275
 13.4.1 Split-range Control, 276
 13.4.2 Valve Position Control, 291
 13.4.3 Ratio Control, 298

Chapter 14 MODEL PREDICTIVE CONTROL 309
 14.1 MPC Replacement of PID, 310
 14.2 Commissioning MPC, 311
 14.3 MPC Replacement for PID with Feedforward, 316
 14.4 MPC Replacement for PID Override, 318
 14.5 Using MPC to Address Process Interactions, 319
 14.6 Layering MPC onto an Existing Strategy, 321
 14.7 MPC Applications, 324
 14.8 Workshop – Model Predictive Control, 324

Chapter 15 PROCESS SIMULATION 327
 15.1 Process Simulation Techniques, 328
 15.2 Developing a Process Simulation from the P&ID, 330
 15.3 Simulating Process Non-linearity, 337
 15.4 Other Considerations, 342
 15.5 Workshop – Process Simulation, 343

Chapter 16 APPLICATIONS 347
 16.1 Inventory Control, 347
 16.1.1 Surge Tank, 348
 16.1.2 Recycle Tank, 349
 16.1.3 Boiler Drum Level – Single Element, 349
 16.1.4 Boiler Drum Level – Three Element, 350
 16.1.5 Workshop – Three Element Drum Level Control, 351
 16.2 Batch Processes, 352
 16.2.1 Batch Digester, 352
 16.2.2 Batch Chemical Reactor, 353
 16.2.3 Batch Bioreactor, 357
 16.2.4 Workshop – Batch Chemical Reactor, 359
 16.3 Continuous Processes, 359
 16.3.1 Chemical Reactor, 359
 16.3.2 Spray Dryer Control, 361
16.3.3 Workshop – Continuous Chemical Reactor, 363

16.4 Combustion Control, 364
 16.4.1 Small Boiler/Heater, 364
 16.4.2 Vat Heater, 365
 16.4.3 Power Boiler – Single Fuel, 366
 16.4.4 Rotary Lime Kiln, 368
 16.4.5 Workshop – Power Boiler Control, 369

16.5 Distillation Control, 370
 16.5.1 Workshop – Distillation Control, 372

16.6 Coordination of Process Areas, 372
 16.6.1 Ammonia Plant H/N Control, 372
 16.6.2 Power House Steam Generation, 374
 16.6.3 Workshop – Ammonia Plant H/N Control, 375

16.7 Difficult Dynamics, Process Interaction, 375
 16.7.1 Pulp Bleaching, 376
 16.7.2 Primary Reformer Temperature, 377

APPENDIX A 379
A.1 Accessing the Web Site, 380
A.2 Download Selection, 390
A.3 Book Selection, 390

GLOSSARY OF TERMS 391

INDEX 401