IEC 62443: INDUSTRIAL NETWORK AND SYSTEM SECURITY

Tom Phinney
Honeywell
Integrated Security Technology Technology Lab
Tom Phinney

- 40+ years experience in software and hardware for real-time systems
- 25+ years as architect and system designer with GE and Honeywell in Phoenix
- Specialized in industrial communications since the late 1970s
- 1980-86: Initial author or early editor of IEEE 802.2, 802.4, 802.5, precursors to 802.11
- 1981-86: Co-founded company making leading-edge POTS and LAN modems
- 1988-1993+: Author/editor of ISA SP50 / IEC SC65C Type 1 fieldbus data-link layer
- 2002: Recipient of ISA’s Standards & Practices award for outstanding service
- 2003: Recognized by ISA as one of the 50 most influential people in modern history in advancing automation, instrumentation, and control technologies
- 2005: Recipient of the IEC's 1906 award, which recognizes major contributions to furthering the interests of worldwide electro-technology standardization
- **Current:**
 - Chairs three IEC standards working groups in the area of industrial process measurement and control:
 - IEC/TC 65/WG 10: cyber-security
 - IEC/SC 65C/MT 9: fieldbus
 - IEC/SC 65C/WG 13: fieldbus cybersecurity profiles
 - ISA SP99 industrial cyber-security – leadership team
 - ISA SP100 industrial wireless networking – significant technical contributor
Outline

• The threat / risk / response security feedback loop
• Security as a continuing process, not a reachable goal
• The landscape of cybersecurity standards
• IEC 62443: *Network and system security for industrial-process measurement and control*
The security feedback loop

TRA – Threat / Risk Assessment
SA – Security Assurance
Threat / risk assessment

• Existing methods are unsatisfactory
 – Which threats?
 – Which risks?
 – Were any missed?
 – The usual conclusion:
 “The risks are too big and many to protect against them all”

• The real questions are:
 “Which countermeasures are appropriate?”
 “What should I do for the amount I can afford?”
 “What is the marginal benefit per unit cost of doing more, or less?”
Security Assurance

- Assurance (def): The basis for trusting that policies are implemented as intended

- Assurance is an ongoing process and thus a continuing cost

- Confidence is the goal

- How much to spend?
- What to verify, and when?
- What is the marginal cost of doing more? ... of doing less?
Security – an ongoing process

• Security is not a goal that can be reached
 – New vulnerabilities are discovered daily
 – Threats continue to evolve
 – Personnel become lax, or find workarounds to security measures
 – \therefore weak points in the system change, becoming new points of attack

• Security is a process and an attitude
 – “All trust is limited”
 – Assume that the attacker is at least as intelligent and motivated as the defenders
 – The weakest points in the system are the most likely targets
 – Security may be achieved, or lost, incrementally through small actions and inactions
 – “Eternal vigilance is the price of security”
The security mindset

“All trust is limited”

• Compartmentalize
 – Minimize what must be defended
 – Minimize increment of potential loss

• Defend in depth
 – One ‘Maginot line’ is not sufficient

• Re-verify basis for trust (similar to Reagan’s “trust but verify”)
 – Verification testing should not be predictable
 – Unverified trust decays with time

• Assume that some personnel & equipment are compromised by the attacker
 – This is one reason why a single ‘Maginot line’ is not enough
Classes of attackers

- Amateur computer hackers/criminals
- Organized crime groups
- Professional, non-state actors (i.e., terrorists, political activists)
- Traditional adversarial nation-states
- Rival corporations and nation-states seeking competitive advantage
- Angry or unethical employees, contractors and consultants
- Outsourced or subcontracted firms and/or employees
- Software and hardware vendors looking for financial benefits
- Unethical advertisers / commercial entities (i.e., spyware and adware providers)
The management challenge

Security is a never-ending process
• that is every employee’s personal responsibility
• with more uncertainty than other business processes
• with mostly indirect measures of success
• and potentially catastrophic demonstrations of failure

As with all continuing processes,
• people become complacent
• or develop workarounds without regard to consequences

Continuing assurance provides the mechanism and driver for maintaining vigilance
Cybersecurity assurance standards

• Product assurance
 – ISO/IEC 15408, Common Criteria
 – ISO/IEC 19790, Security requirements for cryptographic modules (similar to NIST FIPS 140-2)
 – ISO/IEC TR/19791, Security assessment of operational systems

• Process assurance
 – ISO/IEC 21827, SSE capability maturity model (SSE-CMM®)
 – ISO/IEC 17799, Code of practice for information security Mgmt
 – COBIT – Control objectives for information and related technology
 – draft ISA S99 standards: Concepts and process guidance

• Environment assurance
 – ISO 9000, ...
The assurance matrix

- Existing assurance standards address varying portions of this matrix
- None partition cleanly between development, integration and operation phases
- Some address only process; others address both process and product, but unevenly
- None do a good job with threat / risk assessment, in a form that can provide practical guidance
IEC 62243, Network and system security for industrial-process measurement and control

• Focus to date has been on operational “best practices”

• Undergoing restructuring to a threat/risk assessment plus assurance basis

• Proposed multi-part structure:
 – Concepts and Threat/Risk Assessment
 – Development Assurance
 – Integration Assurance
 – Operational Assurance
 – Sample Security Solutions: Policies and System Configurations (most of the material in the early 62443 drafts will go here)
The assurance matrix

Probable structure of IEC 62443–n

<table>
<thead>
<tr>
<th>Development</th>
<th>Integration</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Threat / risk assessment
2. Development assurance
3. Integration assurance
4. Operation assurance
5. Sample security solutions (also known as “Good practices 2006”)

- Anticipate heavy reference to other assurance standards
- Part 5 likely will be the first part issued, as a TS
IEC 62443 working reference model
Acronyms of working reference model

- Securing external network communications paths into automation networks:
 - ECI: External network – Control network Interconnection
 - IRA: Interactive Remote Access to a control network
 - ICC: Inter-Control Center access to a shared control net
 - SED: Standalone Embedded Device
 - PEC: Portable Engineering Computer
 - PSM: Portable Storage Medium

- Securing internal network communication paths within automation networks:
 - ACI: Inter-Area Communication within a hierarchical multi-area control network
 - CCN: Control Center Networks within a single control area
 - FCN: Field Control Networks within a single control area

- Securing devices within automation networks:
 - CNH: Control Network Host
 - AFD: Automation Field Device
Example profile outline from 62443

- n.2 ECI: External network – control network interconnection
- n.2.1 Introduction
 - n.2.1.1 Use cases
 - n.2.1.2 Threats addressed by this profile
 - n.2.1.3 Terminology and definitions
 - n.2.1.4 Applicable network topology
- n.2.2 Assumptions
- n.2.3 Network topology requirements
- n.2.4 Data flow requirements
- n.2.5 Required security functionality
- n.2.6 Operations requirements
- n.2.7 Policy requirements
- n.2.8 Responsibilities by vendor, integrator, owner/operator
Thank you