Simplified remote access

Fact Auto May-Jun Main fig 1
Remote monitoring and control systems using modern data collection techniques deliver improved performance and security, along with simpler implementation and lower costs

By Benson Hougland

Data collection from industrial facilities and plants provides a number of benefits to end users, system integrators, and machine and process skid builders. End users can monitor their facilities and plants worldwide from any location with cellular network or Internet access, and system integrators can do the same for their projects. Original equipment manufacturer (OEM) machine and process skid builders can monitor their products and systems wherever they are installed, even at remote customer sites.

Data collection by OEMs can be especially useful for both the OEM and the customer. Data can be acquired for analysis and remote monitoring, and data can be sent to machines and process skids for remote control. This two-way remote access provides:

  • remote monitoring to quickly alarm and alert personnel
  • predictive capabilities to anticipate problems before they occur
  • remote control to respond to issues and problems
  • improved overall equipment effectiveness: better uptime, throughput, and quality
  • cost savings by eliminating most trips to the field

In addition, OEMs can:

  • log usage data for billing or maintenance
  • gain insight into customer needs
  • analyze data to improve future product or process designs

Although most OEMs need remote access to provide the quality of service their customers want, the barriers are high and include security issues, technical difficulties, and costs.

Cybersecurity is a major concern for both OEMs and their customers. Busy information technology (IT) departments may not have the time, resources, or technical skills to set up remote access to automation systems and equipment.

As a result, older methods like opening ports through firewalls and creating virtual private network (VPN) tunnels are falling out of favor. Newer methods of remote access, particularly those using the Message Queuing Telemetry Transport (MQTT) protocol in publish/subscribe communication models, can be a major improvement, providing the data and access OEMs need without burdening their customers (sidebar).

Industrial hardened edge programmable industrial controllers (EPICs) address these and other remote access requirements with local computing, multiple programming options, local control, and sensor input and output interfaces.

Edge processing

Edge processing encompasses at least three functions. The first is to collect, process, view, and exchange data where it is produced-at the edge of a network. This function requires a powerful processor and an open operating system, such as Linux. The processor filters out anomalies, sorts relevant data, and creates exception-only reporting.

The second function is securely storing and sharing data among databases, cloud platforms, Web services, and programmable logic controllers (PLCs) using modern communication methods. Sharing data with this wide range of hardware and software requires support for multiple communication options at both the hardware and software level.

At the hardware level, multiple communication ports are a must. Minimum requirements for modern systems include multiple gigabit Ethernet, USB, and serial ports. At the software or protocol level, many protocols should be supported, including different variants of Ethernet, Modbus RTU and Modbus/TCP, and MQTT.

Many industry offerings now include embedded support for multiple connectivity methods in their EPICs, including Ethernet and Modbus protocols, plus OPC UA drivers and MQTT/Sparkplug. These methods give support now, and also provide for the future, as vendors are constantly updating their protocol support options.

The third function of an edge processor is to bring data visibility to authorized personnel in several ways: on an integral touchscreen, on a local human-machine interface (HMI), and from any device capable of hosting a Web browser (figure 1). Many OEMs will find an integral touchscreen, and an HDMI port for optional connection to an external display, a significant benefit.

If the touchscreen is sufficient, then the OEM can save the expense of purchasing and installing an external HMI. If the vendor includes an HMI development tool as part of the EPIC software package, a low-cost graphics monitor can simply be connected to the HDMI port to provide an external HMI. In that case, there is no need for an external PC-based HMI, which is very expensive due to the high costs of industrial PCs and PC-based HMI software.