Revised Steady-State Model for Chlorine Dioxide Brightening that Considers Extraction Washer Carryover Effects

Brian N. Brogdon

Future Bridge
Consulting Services, LLC
Past TAPPI PEERS talks proposed simple, generalized models to simulate Elemental Chlorine-Free (ECF) bleach stages, e.g. D_1 Brightening Stage:

$$y_1 = f(x_1, \ldots)$$

Inputs

- x_1, ...

Extracted

- Kappa & Brightness

% ClO$_2$ on Pulp

D$_1$ Stage

Output

- y_1

- D_1 Brightness
Generalized D_1 Brightening Model

- Model constant parameters: β_{11} and β_{12}
- Entering brightness is Extracted Pulp Brightness (B_E)
- Post D_1 brightness is y_1 (% ISO)
- Chlorine dioxide charge in D_1 is x_1 (% ClO$_2$ on o.d. pulp)

Enterering brightness = $B_E = 92 - \frac{\beta_{11}}{\beta_{12} + x_1}$

Ultimate brightness limit = 92% ISO

$y_1 = 92 - \frac{\beta_{11}}{\beta_{12} + x_1}$

β_{11}/β_{12} = Max D_1 stage gain

Brogdon, TAPPI J. (2014)
\(\beta_{11} \) Parameter vs. Extracted Kappa

- \(\beta_{11} \) parameter is \(f(x) \) of extracted kappa of \(D_0(EO) \), etc.
- Also found to represent \((CD)(EO)D_1\), \((DC)(EO)D_1\), etc.

Calculated from laboratory data from various literature sources
Testing D_1 Model with Bleach Plant Data

- D_0(EOP)D_1 sequence with Southern US pine pulp (~ 23-kappa)
- (EOP) pulp: ~ 3.15-kappa and ~ 55% ISO
- Mill utilizes wash press between (EOP) & D_1
- D_1 model over predicts brightness by 2.4 - 4.4 pts.
- (EOP) washer carryover affecting D_1 stage
- Historical (EOP) carryover: 13 – 17 kg TDS/t pulp
Extraction Washer Carryover

- Composition of dissolved solids not well characterized
- Typically measured as chemical oxygen demand (COD)
- 2004 PAPTAC mill survey: 3 – 17 kg COD/t extracted pulp; $\bar{x} \approx 12$ kg COD/t [drum washers]
- Others measured extraction carryover as a “kappa number”
- Carryover as kappa units: ~ 0 (low) to 8.5 (very high)
Quantifying Carryover as Kappa No.

- Kappa test (T 236) conducted on a pulp sample that is well-washed in the lab

- Unwashed (“wet”) kappa test conducted on washer mat sample that includes carryover (as-is discharged from washer)

- Difference between these values is the kappa contribution from extraction washer carryover
Modifying D_1 Model: Hypothesis

- Replace kappa in β_{11} for well-washed pulp ($Kappa_E$) with:
 \[
 \text{Apparent Kappa} = Kappa_E + Kappa_{\text{Carryover}}
 \]

- Extracted pulp with carryover brightens in D_1 like a pulp with higher kappa (i.e., Apparent Kappa)
Testing Hypothesis: Pattyson et al. Lab Data

N. Ontario Softwood
Well-washed E_1 Kappa = 5.1

- (CD)$E_1 D_1$ bleaching with various E_1 carryover levels in D_1
- D_1 Multiple based on well-washed E_1 kappa no.

D₁ Multiple from calculated E₁ wet kappa no. at ~79% ISO

E₁ pulps w/ carryover exhibit common bleaching response with well-washed pulp w/ wet kappa no. value
Testing Hypothesis: Pattyson *et al.* Lab Data

- Data curve-fitted to the D_1 brightening model ($r^2 > 0.99$)
- Regression of E_1 pulps w/ carryover were within ±0.8 pts. of actual lab data
\[\beta_{11} = 4.535 \cdot (\text{app. kappa}) - 7.434 \]

- \(\beta_{11} \) values determined from previous regression were plotted vs. wet kappa no. (i.e., Apparent Kappa no.)
- \(\beta_{11} \) values of E₁ pulps w/ carryover follows well-washed E₁ kappa vs. \(\beta_{11} \) value
Re-examining Mill Data with Revised Model

- Examine revised D_1 model with mill data using *Apparent Kappa* in place of well-wash pulp kappa ($Kappa_E$)

- D_0(EOP)D_1 sequence with US southern pines pulp (~ 23-kappa)

- Graph is with $Kappa_{Carryover}$ contribution set to zero

- Equations can be solved to calculate *Apparent Kappa* & $Kappa_{Carryover}$ using mill’s D_1 brightness as an input variable
Revised Model: Washer Carryover Estimates

- Apparent Kappa > Kappa_E by 1 to 1.9 units
- Carryover contributing ~45% additional kappa load to D_1
Mill’s D₀(EOP) pulp ($Kappa_E = 3.15$) with carryover bleaches in D₁ stage like well-washed D₀(EOP) pulp with a kappa of 4.55
Analysis with revised model suggests ~48% of mill’s D_1 bleach charge is consumed by extraction carryover.

Follows extra kappa load that (EOP) carryover contributes.
Estimating (EOP) Washing Effectiveness

- Effectiveness of mill’s (EOP) press washer estimated
- Effectiveness is % of total solubilized material generated in (EOP) that is removed
- Based on $Kappa_{Carryover}$ & kappa number drop across (EOP) stage
- Approximately 78% of the theoretical (EOP) kappa drop removed in the press washer
ClO$_2$ Uptake by Extraction Carryover

- Various N.A. mills & lit. data analyses suggest bleach consumption caused by carryover is $f(x)$ D_1 brightness

- 1 kappa unit of carryover consumes 2.5 – 4.6 kg ClO$_2$/t (78 to 84% ISO)
ClO$_2$ Uptake by Extraction Carryover

Bleach consumption similar to Reeve et al. (1977) study:
2.6 – 3.4 kg ClO$_2$/kappa of carryover
Summary: D_1 Brightening Response

Generalized D_1 brightness equation can model bleach plant data:

$$ y_1 = 92 - \frac{\beta_{11}}{\beta_{11}} \left(92 - B_E \right) + x_1 $$

- **Inputs** x_1, B_E, β_{11}
- **D$_1$ Stage**
- **Output** y_1

Extracted pulp properties

% ClO$_2$ on Pulp

D_1 Brightness
Summary: Extracted Pulp Properties

- β_{11} parameter influenced by the pulp’s extracted kappa number & its carryover (expressed as kappa units):

$$\beta_{11} = 4.535 \times \text{Apparent Kappa} \approx 7.434$$

![Graph showing brightness limit and extracted brightness](image)

$$\text{Apparent Kappa} = \text{Kappa}_{E} + \text{Kappa}_{\text{Carryover}}$$
Summary: Use of Model with Mill Data

- Modified model can be used to calculate impact of extraction washer carryover on D_1 Bleaching

$$y_1 = f(x_1, B_E, \beta_{11}, \text{Kappa})$$

- $\text{Kappa}_{\text{Carryover}}$
- $\text{Kappa}_E \& B_E$
- $x_1, \% \text{ClO}_2$ on Pulp
- y_1, D_1 Brightness
Equations can be solved to estimate extraction washer carryover, washing effectiveness, bleach consumption caused from carryover, & opportunities for optimization.

\[
y_1 = f(x_1, B_E, \beta_{11}, \text{Kappa})
\]
Summary: Carryover ClO\(_2\) Consumption

- Bleach Consumption by extraction washer carryover varies as function of D\(_1\) brightness

- Extraction washer carryover consumes 2.4 to 4.6 kg ClO\(_2\)/t pulp per kappa unit of carryover
Questions?
Additional Information:

Brian N. Brogdon
Brian.Brogdon@gmail.com