Seven Methods to Improve Control Performance in Pulp and Paper

Steve Obermann
Presenter – Steve Obermann

• A Chemical Engineer with emphasis in process automation.
• Expertise in advanced process control designs for refinery and petrochemical process units, process modeling, inferential properties, real time optimization and cost/benefit estimation.
• Metso ExperTune develops and markets pre-packaged industrial software for the processing and manufacturing industries which maximizes productivity, efficiency and reduces waste.
Agenda

- What is Control Performance?
- Measure Control Performance?
- Apply Target Solutions
- Reduce Variability
- Get to the Root Cause
- Follow Up
- Document Shared Results
- Make it a Habit
- Case Study
- Summary
- Questions & Answers
Control Performance is…

The overall performance of the control system
- Instrumentation
- Controllers
- Control valves
- Advanced applications

And its effect on the business
- Cost
- Quality
- Environmental
- Production Goals
Existing Control Performance

• Control Performance – The Facts
 – 10%-35% of control loops are in **manual**
 – 1.5M to 5.3M in under utilized assets by running in manual in a 1000 loop site
 – 30% of control valves have problems
 – Are you repairing the correct valves?
 – 30% of control loops are tuned incorrectly, increasing variability in the process.
 – A tremendous amount of money can be saved by understanding the control loop interactions and implementing corrective action.
Method One: Measure Control Performance
Finding key performance metrics for control systems

<table>
<thead>
<tr>
<th>Metric</th>
<th>How Measured</th>
<th>How it Affects the Bottom Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Time not in Normal Mode</td>
<td>% of time that control loops are in manual or other sub-optimal mode</td>
<td>Symptom of other underlying problems. Directly affects safety.</td>
</tr>
<tr>
<td>% of Time at Limit</td>
<td>% of time that valves are fully opened or fully closed</td>
<td>Identifies production constraints.</td>
</tr>
<tr>
<td>Oscillation Significance</td>
<td>Affect of oscillation on process performance</td>
<td>Energy costs, variability, and quality.</td>
</tr>
<tr>
<td>Valve Travel</td>
<td>Amount of valve movement per hour.</td>
<td>Maintenance Costs.</td>
</tr>
</tbody>
</table>
Develop the Measures for your Site

- Report them.
- Establish goals.
- Use them to focus effort.
Method Two: Apply Targeted Solutions
Targeted solutions deliver improved business performance for the mill

<table>
<thead>
<tr>
<th>Measure</th>
<th>Targeted Solution</th>
<th>Business Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Time Valve at Limit</td>
<td>Change valve trim, or reduce restrictions, or increase pump capacity</td>
<td>Production increases, often for very minor investment in valve trim.</td>
</tr>
<tr>
<td>Excessive Valve Travel</td>
<td>Add a filter, remove derivative action.</td>
<td>Reduced process variability, improved reliability.</td>
</tr>
<tr>
<td>Harris Index, especially for flow loops.</td>
<td>Controller Tuning</td>
<td>Stability, fast response, and quality improvement.</td>
</tr>
<tr>
<td>Oscillation Significance and Oscillation Period.</td>
<td>Sort all loops by oscillation period. Resolve root cause by tuning or valve repair.</td>
<td>Most often, energy savings and process stability. Sometimes production increase.</td>
</tr>
<tr>
<td>Opportunity Gap</td>
<td>As variability is reduced, forces operators to push key setpoints closer to optimum target values.</td>
<td>Reduce Unit Cost and improve quality.</td>
</tr>
<tr>
<td>Noise Band, especially for consistency controls.</td>
<td>Filtering and tuning</td>
<td>Reduced quality variability. Reduced operating costs.</td>
</tr>
</tbody>
</table>
Method Three: Variability Reduction
Historical record of the process variability

- Pay attention to both short-term and long-term variability
- Variability may be periodic (cyclical) or more random in nature
- Periodic variation can be tracked by performing Fourier Transform analysis on instrument signals
- The analysis shows the strength and the period of oscillations
Variability effects can be broad

- Find the bad actors
- Find the source

The bad actor may not be the root cause.
Method Four: Get to Root Cause
Automated Root-Cause Analysis

- Pay attention to both short-term and long-term variability
- Variability may be periodic (cyclical) or more random in nature
- Periodic variation can be tracked by performing Fourier Transform analysis on instrument signals
- The analysis shows the strength and the period of oscillations
Automated Root Cause is a Proven Technique

• A Plastics Plant in Alabama saved $1MM+ after identifying a Cooling Tower cycle that drove process temperature and pressure swings.

• A Chemical plant in Texas found the root cause of distillation column upsets, and immediately captured energy savings of 7,000 pounds per hour.

• A Paper Plant in Wisconsin identified the root cause of paper machine basis weight quality problems in an unlikely upstream location.
Develop your process understanding more quickly

Massive cross-correlation study

- The magnitude of the interaction is made clear.
- The groupings between variables is made clear.
- The lead/lag time factor is made clear.

Normally occurring process data
Method Five: Follow Up
Control Performance

Detailed Unit Evaluation
Work to establish performance KPIs, set initial benchmarks and start tracking.

Corrective Actions
Identify an action plan and recommendation. Follow up on action plans, to ensure the issue is resolved.

Diagnosis
Track performance against KPIs, with smart, targeted notifications. Identify issues with biggest economic impact and their root cause.

Value Documentation
Provide regular reports documenting identified issues, root cause, proposed action and resolution status.
Method Six: Document and Share Results
Control Performance

- **Documenting the Benefit**
 Ask control engineers to provide “Before and After” pictures, showing the technical impact of their work.
 Start to identify where you expect to see the economic improvements.

- **Results & Expectations**

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Typical Range</th>
<th>Conservative Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Reduction</td>
<td>0.5% to 2%</td>
<td>0.5% to 1%</td>
</tr>
<tr>
<td>Production Increase</td>
<td>1 to 10%</td>
<td>1 to 2%</td>
</tr>
<tr>
<td>Valve Maintenance Budget</td>
<td>10% to 50% reduction</td>
<td>10% to 20%</td>
</tr>
<tr>
<td>Quality Improvement</td>
<td>5% to 50% improvement</td>
<td>5% to 10%</td>
</tr>
</tbody>
</table>
Method Seven: Make it a Habit
Control Performance Monitoring
The first 6 months need to become a habit

- **Continuous Improvement**

 Continue to resolve issues based on economic impact giving incremental performance improvement

- **Identify Additional Surges**

 Continuous execution of all of the components of control loop performance avoids future surges.

- **Diagnose & Correct New Issues**

 Identify new emerging issues – failing devices, changed process, incorrect process settings
Questions