
Chapter 1 – Introduction 15

in the historical database. OPC-HDA client applications retrieve
historical data through the OPC-HDA server to display variable
trends (Figure 1-13). The server filters and aggregates data based
on the client request such that only required data is transmitted
with minimum overhead. OPC-HDA goes a step further than
ODBC, OLE_DB, ADO and others by defining an exact format for
the data so that no custom programming is required by the user to
access data from the historian. The OPC-HDA specification is plug-
and-play.

Figure 1-13. Example of OPC-HDA Architecture

Multiple OPC-HDA clients can simultaneously access the
historical data from one or more OPC-HDA servers in the same
computer or machines distributed on the network. An OPC-HDA
trend viewer client plays back the data from many servers on the
screen. Unlike proprietary systems where third-party applications
cannot access the data or custom API programming is required,
an OPC-HDA solution is completely open.

Organization of the internal database is different for every system.
Nevertheless, what really matters is that the data can be easily
retrieved. ODBC and OLE_DB require programming knowledge as
well as documentation of the database format for access. OPC-HDA
makes the retrieval easy, as it is possible to browse the information
without knowledge of the databases or programming. OPC-HDA is
highly specialized for the automation software domain and is not
supported in execution and business-type applications.

Therefore, it is a good idea to choose a system that supports both OPC-
HDA as well as ODBC and OLE_DB.

Viewer

Hardware

OPC DA
Server

Other OPC
DA Server

Historian

Database

Trend Chart

OPC DA

OLE_DB
Other OPC
HDA Server

OPC HDA

Other OPC
HDA Client

Other

Viewer

Hardware

OPC DA
Server

Other OPC
DA Server

Historian

Database

Trend ChartTrend Chart

OPC DA

OLE_DB
Other OPC
HDA Server

OPC HDA

Other OPC
HDA Client

Other

berge chap 1.qxd 1/19/2005 9:37 AM Page 15

16 Software for Automation

Live Data Gatewaying (OPC-DX)

Many different protocols exist on Ethernet, RS-232, RS-485, and
other media. Application protocols above Ethernet and TCP/IP
are incompatible and unaware of each other and therefore cannot
exchange information. A plant that purchases different
subsystems from diverse manufacturers may end up with islands
of automation. Gateway hardware to convert between the
different protocols is difficult if not impossible to come by, and
requires a tremendous configuration effort if the amount of data is
large. However, using the OPC-DX (Data eXchange) technology
the plant will be able to link these subsystems together (Figure 1-14).
OPC-DX thus works like a soft gateway similar to OPC-DA
servers joined by a bridge application.

Figure 1-14. OPC-DX Software Gateway

OPC-DX is a direct server-to-server communication mechanism.
Devices, networks or subsystems connect to OPC-DA servers.
OPC-DA servers can in turn be connected to each other directly
using OPC-DX interfaces communicating peer-to-peer, eliminating
the need for intermediate bridge applications to transfer the data.
The connections are established using a configuration tool that
uses the universal OPC browser mechanism to locate the data
source and sink in devices. For the most part, linking data in one
device to another will now be a simple drag-and-drop operation.
Safety and availability concerns for bridging data through a PC
must be considered.

Since different protocols and devices represent data in different
forms, it is often necessary to transform the data as it is
transferred from one device to another.

DX DX DX DX

EtherNet/IP Modbus/TCPPROFInet
FOUNDATION
Fieldbus HSE

DX
Configuration Tool

DX DX DX DX

EtherNet/IP Modbus/TCPPROFInet
FOUNDATION
Fieldbus HSE

DX
Configuration Tool

berge chap 1.qxd 1/19/2005 9:37 AM Page 16

Chapter 1 – Introduction 17

Script and Macro Language (VBA)

Some supervisory control tasks require complex interaction of
data input from the user and manipulation of data to and from
the devices and databases, such as Excel, for user interface or even
as part of the control strategy. VBA is a textual, programmatic
scripting language that requires a little bit of programming
knowledge, but not a “black belt.” For simple conversion, only an
equation or scaling should suffice and VBA should not have to be
used for this. Similarly, a simple function such as opening another
page or writing a value should not require VBA. For a complex
task, a script or macro function is required. VBA is a macro script
closely related to the Visual Basic (VB) programming language,
but they are not the same. While VB is used to create applications
and components, VBA is embedded in an application and used to
customize the behavior of that application. OPC and VBA have
lowered the barrier of software expertise required. Automation
system engineers, as opposed to software programmers, can now
build solutions. VB is beyond the scope of this book.

VBA is helpful for automation of complex functions that cannot be
described through a single simple equation or action. This
includes, for example, collecting data and displaying to the user a
sorted list of options to chose from, transforming data into
another format, putting data as a file in a folder where it can be
accessed by other applications, and parsing files from other
applications to extract data. VBA is thus a way to share data
among applications that don’t support OPC or OLE_DB, or when
data, such as a report, is unsuitable for OPC transfer. This may be
used for conversion between the different data formats and
semantics different bus protocols use, such as the many flavors of
Ethernet. Another example is when certain actions require
verification and confirmation from the user. A sophisticated
example may be for VBA to make all the necessary changes to
change the control objective from “max throughput” to “minimum
energy consumption.” VBA may also be used in some batch
control applications to read recipes from Excel, etc. You may use
VBA for complex computations and looking up in tables (e.g., for
product properties for use in compensation, and so on). Such
functions can be date/time scheduled or triggered by the operator,
OPC events and alarms, or other applications. Control strategy
languages such as ladder diagram and function block diagram are
not suitable for this. For some system integration requirements
scripts are the only feasible solution. Apart from MS-Office

berge chap 1.qxd 1/19/2005 9:37 AM Page 17

18 Software for Automation

applications like Excel, Word, and Access, VBA is used in
hundreds of other applications including most operator
visualization and popular plant information systems. Applications
from different manufacturers that host VBA can be integrated with
each other using a single language, but it does require some
programming. However, advanced system integrators will be able
to do it. Applications that host VBA can be customized providing
tailored solutions to very specific user needs for applications
supporting OLE automation. By configuring properties, methods,
and events, the applications can be made to respond to user
actions such as opening or closing an application.

It is therefore a good idea to use a system host that has embedded VBA in
the graphics application, not in a separate add-on application.

If VBA is not embedded in the application itself then it may
become necessary to interface to other applications that do. This
interface adds complexity, partly nullifying the benefits of a single
language. VBA script is very much easier to use than full-fledged
programming languages like C/C++/C# etc., and even VB itself,
albeit a bit limited. In fact, even non-experts can write simple
scripts using VBA.

For this reason, it may be a good idea to use applications that have VBA
embedded, not as an add-on.

VBA is currently the most popular scripting language in
automation software. Executing VBA is not supported on thin-
client solutions for Web environment. Instead, Web pages use
VBScript and JScript. VBScript and JScript are less powerful than
VBA but can perform many tasks. If Web visualization will be
done in the system, make sure it supports VBScript or JScript.

Components and Controls (OLE Automation, ActiveX)

Component-based applications make it possible to reuse software
controls and components from other suppliers. Sometimes third-
party controls and components are required to meet specific project
needs. ActiveX is currently the most popular component
technology in automation software, but is only supported in MS-
Windows.

Components are modules of software that perform some function.
A component can consist of many smaller components. Even large

berge chap 1.qxd 1/19/2005 9:37 AM Page 18

Chapter 1 – Introduction 19

software such as an OPC server or HMI are also components,
albeit built from many small components.

In essence, there are three levels of sophistication for ActiveX objects:

• ActiveX code components

• ActiveX controls

• ActiveX OLE controls

ActiveX code components are the most basic components and
thus the most difficult to use. They must be created through code
and therefore require extensive programming knowledge. ActiveX
components are more sophisticated, having an additional layer
making them easier to use; they can (e.g., appear graphically and
be dragged-and-dropped from the software’s toolbox). ActiveX
components do require some programming skills, but no more
than what many system integrators can handle. ActiveX OLE
controls are the most sophisticated components and therefore
easiest to use, requiring little or no programming knowledge.
Components supporting OLE (Object Linking and Embedding)
can be linked or embedded without writing code. Thousands of
ActiveX controls and components are available. For example,
there are ActiveX controls such as document viewers and code
components such as Modbus drivers and so on.

It is therefore a good idea to use system software that supports ActiveX
code components, ActiveX controls, and ActiveX OLE controls.

ActiveX Code Components

ActiveX code components are hidden functions such as
communication drivers for proprietary protocols that the
operators do not see. ActiveX components exist for many common
functions. Advanced system integrators can develop ActiveX
components for specialized functions.

ActiveX Controls

Many suppliers provide general purpose controls such as slider,
spin button, scrollbar, calendar, clock, hierarchical browser tree,
toolbar, progress bar, status bar, list box, combo box, grid
(spreadsheet/table), tabs, etc. Hundreds of third parties sell
ActiveX controls tailored for process control, manufacturing
automation, and building automation, such as pumps, conveyor

berge chap 1.qxd 1/19/2005 9:37 AM Page 19

20 Software for Automation

belts, motors, fans, tanks, compressors, condensers, heat
exchangers, and stirrers, etc. (Figure 1-15).

Figure 1-15. Third-Party Library of ActiveX Components (Software Toolbox
Symbol Factory)

These days most operator visualization software products come
with many ActiveX controls included. Others can be purchased
from third parties, or even developed by advanced system
implementers using provided tools. It is possible at design time to
simply drag-and-drop ActiveX controls from a toolbox into
container applications. Some VBA scripting is required to connect
to the data source.

ActiveX OLE Components

Generally, operator visualization software is an “OLE container,”
meaning it can serve as an execution environment for OLE
controls, which cannot execute on their own. OLE technology is
widely supported by many software suppliers, making it relatively
easy to put together components from many suppliers, in some
cases without any programming knowledge at all. OLE
automation is the ability to change properties of OLE components,
such as their shape and color. OLE objects can be linked or
embedded.

Embedding means the container application hosts an OLE
component making the embedded object appear within the hosting

berge chap 1.qxd 1/19/2005 9:37 AM Page 20

Chapter 1 – Introduction 21

application, displaying the menu system and tools of the embedded
application to the user. A classic example is editing an Excel
spreadsheet from within a Word document or PowerPoint
presentation. At the end of the editing all the data from the
embedded application is stored in the container application.
ActiveX OLE objects can be dragged or opened in any container
application and edited just as in the native application. For
example, a Word document or Excel spreadsheet can be opened
within the operator visualization software, without having to start
another application, and the menus and toolbars from the native
application will be incorporated in the operator visualization
application. This is ideal for laboratory data entry, batch
submissions, and batch recipes (Figure 1-16).

Figure 1-16. Embedded OLE Object Edited in Operator Visualization
Displaying Native Menus (SMAR SYSTEM302)

Linking means that the applications are independent and the data
resides in the source application, only transferring data from one
to the other. Linking thus makes it possible to display the data in
several applications at the same time. ActiveX in general, and
OLE automation in particular, permits powerful integration of
applications and customization of look and feel.

An OLE control with built-in OPC access, such as an animated gauge
or a live trend viewer, can be dropped into a container and then get
data from OPC without any programming at all (Figure 1-17).

berge chap 1.qxd 1/19/2005 9:37 AM Page 21

22 Software for Automation

Figure 1-17. ActiveX Control Executes with Live Data in Any Container
(Microsoft Word)

OLE controls are primarily used in the graphics screens in the
operator visualization software, but many other applications also
make use of ActiveX, and controls can be dropped into office
applications like Word and Excel.

Web

The technologies described above are largely based on a client-
server approach and operate in a single computer, or across
different computers located on the same subnet of an automation
system’s control-level network. For information and business
network integration across corporate firewalls onto the private
Intranet and beyond, across the public Internet, it is necessary to
use Web technologies designed for this purpose (Figure 1-18).

Figure 1-18. Integration of the Automation System Throughout the
Enterprise

Web Server
Web Portal

OPC Server

Firewall

Intranet

Local office

Firewall

Internet

Corporate HeadquartersCustomer

Wireless
Access
Point

Portable
Web browser

Fieldbus

OPC
HTTP

berge chap 1.qxd 1/19/2005 9:37 AM Page 22

Chapter 1 – Introduction 23

Fieldbuses, building automation network protocols and DCOM
(e.g., OPC) do not communicate through a firewall unless its
protection mechanisms are largely disabled. This would expose
the plant to cyber intruders. Using Web technologies is one of the
best ways to get data out of the automation system more securely
without making it dangerously easy for others to get into the
system. By presenting and transacting information as static or
dynamically generated Web pages, it can be displayed and
transported through routers and firewalls with lower risk, but not
entirely without risk. Information can thus be disseminated
throughout the enterprise into the execution and business domain
using the corporate Intranet and the public Internet.

Applications with OPC and OLE_DB client interface collect
selected information from the network and databases, process it,
and present it in different formats for various users. Depending
on the application, pages may be predefined asset management
screens, customized reports or operator screens identical to the
operator workstations. The information can be seen using a
normal Web browser. All kinds of information can thus be
delivered on a need-to-know basis.

As explained further below, it is a good idea to use a system that has an
HTTP Web server and permits publishing data and reports in HTML
format.

Web Transport (HTTP)

HTTP (HyperText Transfer Protocol) is currently the most
common protocol for transporting Web pages. HTTP is firewall-
friendly, meaning that it provides request and response through
the firewall without the security of the firewall having to be
completely compromised. HTTP uses a single firewall port, and
because HTTP is “stateless” and easily recognizable, it is easier to
protect. Thus HTTP makes it more difficult for hackers to attack
both the Web server and the Web browser, but it isn’t impossible
to penetrate. HTTP is a widely accepted standard supported in
many products, not just for Web browsing. A Web server is
software that runs on a workstation or dedicated server. A Web
server called IIS comes built into Windows, but others are also
available in the market.

The major advantage of HTTP is that it was originally designed
for communication across the Internet. However, a slight
disadvantage is that it is not particularly efficient. Therefore HTTP

berge chap 1.qxd 1/19/2005 9:37 AM Page 23

