2.6 Models for Disturbances
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Figure 2.28 A Hammerstein model a), and a Wiener model b)

Fortunately there are special classes of models that are well suited for PID con-
trol. A system is represented as a combination of a static nonlinearity and a linear
dynamical system. Such models are quite simple and they are nicely adapted to
PID control but there are nonlinear systems that cannot be well modeled using
this approach.

The nonlinearity can be before the linear part as shown in Figure 2.28a. This
model is called a Hammerstein model. It is a good model for a system with a
nonlinear actuator, for example a nonlinear valve.

The nonlinearity can also be placed after the linear dynamical system. This
gives a Wiener model which is illustrated in the block diagram in Figure 2.28b.
The Wiener model is a good representation for a system with a nonlinear sensor,
for example a pH electrode.

If the process is nonlinear, the dynamics are varying with the operating con-
ditions. Ideally, the controller should be tuned with respect to these variations.
A conservative approach is to tune the controller for the worst case and accept
degraded performance at other operating conditions. Another approach is to find
a measurable variable that is well correlated with the process nonlinearity. Such
a variable is called a scheduling variable. The controller is then tuned for a few
values of the scheduling variable. Controller parameters for intermediate values
may be obtained by interpolation. This approach to generate a nonlinear controller
is called gain scheduling. It will be discussed in more detail in Section ??.

It is easy to compensate for the nonlinearity for a system that is described by
a Wiener or a Hammerstein model by using a nonlinear controller composed of
a PID controller and a static nonlinearity. The linear PID controller is designed
as if the system was linear. When the process has a nonlinearity at the input
we simply pass the control signal through the inverse of the nonlinearity. If the
nonlinearity is at the output as for the Wiener model we simply pass the sensor
signal through an inverse of the nonlinerity before feeding the measured signal
to the controller. Many PID controllers have a facility to introduce a nonlinerity
characterized as a piece-wise linear function.

2.6 Models for Disturbances

So far, we have only discussed models of process dynamics. Disturbances is an-
other important aspect of the control problem. In fact, without disturbances and
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process uncertainty there would be no need for feedback. There is a special branch
of control, stochastic control theory, that deals explicitly with disturbances. This
has had little impact on tuning and design of PID controllers. For PID control,
disturbances have mostly been considered indirectly, e.g., by introducing integral
action. As our ambitions increase and we strive for control systems with improved
performances it will be useful to consider disturbances explicitly. In this section,
therefore, we will present some models that can be used for this purpose. Models
for disturbances are useful for simulation, diagnostics, and performance evalua-
tion.

The Nature of Disturbances

We distinguish between three types of disturbances, namely, setpoint changes,
load disturbances, and measurement noise. In process control, most control loops
have setpoints that are constant over long periods of time with occasional changes.
An appropriate model is therefore a piecewise constant signal. Setpoint changes
are typically known beforehand. Good response to setpoint changes is the major
issue in drive systems.

Load disturbances are disturbances that enter the control loop somewhere
in the process and drive the system away from its desired operating point. Load
disturbances typically have low frequency. Efficient reduction of load disturbances
is a key issue in process control systems.

Measurement noise represents disturbances that distort the information about
the process variables obtained from the sensors. Measurement noise is often high
frequent. It is often attempted to filter the measured signals to reduce the mea-
surement noise. Filtering does, however, add dynamics to the system.

The Character of Disturbances

One way to get a first estimate of the disturbances is to log the measured variable.
The measured signal has contributions both from load disturbances and measure-
ment noise. If there are large variations it is often useful to investigate the sensor
to reduce some of the measurement noise. Filtering may also be useful. Filtering
should be done in such a way that it does not impair control.

The process variations may have very different character. Some examples are
given in Figure 2.29. The disturbances can be classifies as pulses (a), steps (b),
ramps (c), and periodic (d). It is useful to compute statistics such as mean values,
variances and maximum deviation. It is also useful to plot a histogram of the
amplitude distribution of the disturbances.

Simple Models

It is useful to have simple models for disturbances for simulation and evaluation
of control strategies. Models that are typically used are shown in Figure 2.29.

The impulse is a mathematical idealization of a pulse whose duration is short in
comparison with the time scale. The signals are essentially deterministic. The only
uncertain elements in the impulse, step, and ramp are the times when they start
and the signal amplitude. The uncertain elements of the sinusoid are frequency,
amplitude, and phase.
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Figure 2.29 Different charachters of disturbances. Markera a,b,c,d
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Figure 2.30 Examples of noise signals.

Random Fluctuations

There are well developed concepts and techniques for dealing with random fluctu-
ations that are described as stochastic processes. There are both time domain and
frequency domain characterizations. In the frequency domain the random distur-
bances are characterized by the spectral density function ¢(w). The variance of

the signal is given by
%= / ¢(w)dw

The spectral density tells how the variation of the signal is distributed on different
frequencies. The value

2¢(w)Aw

is the average energy in a narrow band of width Aw centered around w. A signal
where ¢(w) is constant is called white noise. Such a signal has its energy equally
distributed on all frequencies.

There are efficient techniques to compute the spectral density of a given func-
tion. If the spectral density is known it is possible to evaluate how the variations
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Figure 2.31 Prediction error 6. as a function of prediction time 7.

in the process variable are influenced by different control strategies.

Prediction of Disturbances

When controlling important quality variables in a process it is often of interest
to assess the improvements that can be achieved and to determine if a particular
control strategy gives a performance that is close to the achievable limits. This can
be done as follows. The process variable y(¢) is logged during normal operation
with or without control. By analyzing the fluctuations it is possible to determine
how accurately the process variable can be predicted 7' time units into the future
based on present and past values of y. let y(¢ + T'|¢t) be the best prediction of
y(¢ + T) based on y(r) for all 7 < t. By plotting the variance of the prediction
error y(t+T)— y(t+ T|t) as a function of the prediction time we obtain the curve
shown in Figure 2.31. For large prediction times the prediction error is equal to
the variance of the process variable, approximately o,, = 12 in the figure. The
best control error that can be achieved is the prediction error at a prediction time
T, corresponding to the time delay of the process and the sampling time of the
controller. This can be achieved with a so called minimum variance controller. The
figure indicates that variances less that 5 can be obtained if T, is less than 3.4.
Further reductions are possible for smaller T, but variances less than 1 cannot be
achieved even if T}, is very short. By comparing this with the actual variance we
get an assessment of the achievable performance. This is discussed in more detail
in Chapter 10. There is efficient software for computing the prediction error and
its variance from process data.

2.7 How to Obtain the Models

In previous sections we have briefly mentioned how the models can be obtained. In
this section we will give a more detailed discussion of methods for determining the
models. There are two broad types of methods that can be used. One is physical
modeling and the other is modeling from data.

Physical modeling uses first principles to derive the equations that describe the
system. The physical laws express conservation of mass, momentum and energy.
They are combined with constitutive equations that describe material properties.
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When deriving physical models a system is typically split into subsystems. Equa-
tions are derived for each subsystem and the results are combined to obtain a
model for the complete system. Simple examples were given in Section 2.3. Phys-
ical modeling is often very time consuming. There are often difficult decisions on
suitable approximations. The models obtained can, however, be very useful since
they have a sound physical basis. They also give considerable insight into the
dependence of the model on the physical parameters. A simple way to start is to
model dynamics as first order systems where the time constants are the ratio of
storage and flow.

Modeling from data is an experimental procedure. Data is generated by per-
turbing the input signal (the manipulated variable) and recording the system
output. The experiment can also be performed under closed-loop conditions for
example by perturbing the setpoint of a controller or the controller output. It is
then attempted to find a model that fits the data well. There are several impor-
tant issues to consider, selection of input signals, selection of a suitable model
structure, parameter adjustments and model validation. Ideally the experimental
conditions should be chosen to be as similar as possible to the intended use of the
model. The parameter adjustment can be made manually for crude models or by
using optimization techniques.

Static Models

Static models are easy to obtain by observing the relation between the input and
the output in steady state. For stable well damped processes the relation can be
obtained by setting the input to a constant value and observing the steady state
output. The procedure is then repeated for different values of the input until
the full range is covered. For systems with integration it is convenient to use a
controller to keep the output at a constant value. The setpoint of the controller is
then changed so that the full signal range is covered. Effects of disturbances can
be reduced by taking averages.

The Bump Test

The bump test is a simple procedure that is commonly used in process control. It
is based on an experimental determination of the step response. To perform the
experiment the system is first brought to steady state. The manipulated variable is
changed rapidly to a new constant value and the output is recorded. The measured
data is scaled to correspond to a unit step. The change in the manipulated variable
should be large in order to get a good signal to noise ratio but it should not be
so large that the process behavior is not linear. The allowable magnitude is also
limited by process operation. It is also useful to record the fluctuations in the
measurement signal when the control signal is constant. This gives data about the
process noise. It is good practice to repeat the experiment for different amplitudes
of the input signal and at different operating conditions. This gives an indication
of the signal ranges when the model is linear. It also indicates if the process
changes with the operating conditions.

By inspection of the step response it is possible to make a crude classification
of the dynamics of the system into the categories shown in Figure 2.2. A model
with a few parameters is then fitted to the data.
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