
5
OTHER TROUBLESHOOTING

METHODS

Substitution and fault insertion

“Remove and conquer”

“Circle the wagons”

Trapping

Consultation

Intuition and out-of-the-box thinking

5.1 WHY USE OTHER TROUBLESHOOTING
METHODS?

The previous chapter discussed logical/analytical frameworks for
troubleshooting. While these frameworks work most of the time, some
problems require less systematic techniques to complement the logical
frameworks. Normally, you will begin to use these other techniques only
after the logical analysis has failed to suggest a viable solution. Defining
the problem, gathering information, and performing analysis still take
place when you use these methods.

You may need to approach troubleshooting from a different point of
view because a system may be too complex or sophisticated to
troubleshoot with the knowledge available to you. This can occur with
microprocessor-based equipment consisting of multiple components (such
as a PLC or a DCS). Sometimes manufacturers provide only limited
information about what goes on inside the equipment. Maybe the problem
is transient in nature, or is in a complex system with communication links
between components and multiple power systems and grounds, as in a
multiple variable-speed drive system.

Mostia2005.book Page 59 Wednesday, October 12, 2005 1:25 PM

60 Other Troubleshooting Methods

5.2 SUBSTITUTION METHOD
The substitution method is troubleshooting by substituting a known

good component for a suspected bad component. For modularized
systems or those with easily replaceable components, substitution may
reveal the component that is the cause of the problem. First, define the
problem and gather and analyze as much information as you can. Note
that these steps are no different than the initial steps in the structured
framework methodology. Then select a likely replacement candidate and
substitute a known good component for it. If the problem goes away, you
have at least found a partial solution. Then evaluate to see if a more
general solution is needed. For example, if the component can be repaired
on-site, either troubleshoot it further to find the lower-level cause of the
problem or return it to the manufacturer for analysis.

By substituting components until the problem is found, the
substitution method may find problems where there is no likely
candidate, a group of candidates, or even a vague area of suspicion. One
potential problem with modular substitution, though, is that a higher-
level cause can damage the replacement component as soon as you install
it. This may confuse the issue if the failure is immediate as you will
generally have the same symptoms after the replacement. If the failure is
not immediate, this will give you a clue that the real cause of the problem
is external to the module. The use of this method can raise the overall
maintenance cost due to extra module cost and the cost of inventory of
replacement modules. Even more problematic are cases in which the
higher-level cause does not damage the replacement right away.

Another form of this method is to substitute or insert a known good
signal or value into a system to see where a problem comes from. If you
insert a known good signal and the downstream part works properly,
then the problem is upstream. The converse is also true.

5.3 FAULT INSERTION METHOD
Sometimes you can insert a fault instead of a known good signal or

value and see how the system responds. For example, when a software
interface keeps locking up, you may suspect that the interface is not
responding to an I/O timeout properly. You can test this by inserting a
fault—an I/O timeout. Another example of fault insertion would be
inserting a bad value into a point in a computer program to see how the
program responds. A third example might be inserting a transient into a
system, such as a simulation of a voltage sag.

Mostia2005.book Page 60 Wednesday, October 12, 2005 1:25 PM

Troubleshooting 61

5.4 “REMOVE AND CONQUER” METHOD
For loosely coupled systems that have multiple independent devices,

removing devices one at a time may help to find certain problems. For
example, if a communication link with ten independent devices talking to
a computer is not communicating properly, you might remove the boxes
one at a time until the offending box is found. Once the problem device
has been detected and repaired, the removed devices should be reinstalled
one at a time to see if any other problems occur.

The “remove and conquer” technique is particularly useful when a
communication system has been put together incorrectly or exceeds
system design specifications. For example, there might be too many boxes
on a communication link, cables that are too long, cable mismatches,
wrong cables, impedance mismatches, or too many repeaters. In these
situations, sections of the communication system can be disconnected to
see what happens.

”Remove and conquer” can also work for grounding problems. To
detect whether a system is grounded in two places, try lifting a ground to
see if things get better. (If you are lifting a safety ground, take care that
you are protected while doing this.) One common problem for which this
method is useful is when a shield is grounded in two places, causing a
ground loop; if the regular shield ground is disconnected and the system
improves, then another ground connection on the same shield may be the
problem.

A similar technique, “add back and conquer,” means removing all the
boxes and adding them back one by one until you find the cause of the
problem. For example, on a new communication system like the one
mentioned above, the boxes were removed one at a time and replaced, but
no offending box was found. But when all the boxes were removed and
added back one at a time, the troubleshooter found that there were too
many devices for the computer’s port to support. This could also have
been detected if the devices were removed one at a time and not replaced
and a point was found where the system worked.

5.5 “CIRCLE THE WAGONS” METHOD
When you believe that the cause of a problem is external to the device

or system, try the “circle the wagons” technique. Draw an imaginary circle
or boundary around the device or system; then see what interfaces (such
as signals, power, grounding, environmental, and EMI) cross the circle.
Then isolate and test each boundary crossing. Obviously, if you do not
identify all the boundary crossings, you may miss the one causing the
problem. Often this is just a mental exercise that helps you think about
external influences, which then leads to a solution. Figures 5-1 and 5-2
illustrate this concept.

Mostia2005.book Page 61 Wednesday, October 12, 2005 1:25 PM

62 Other Troubleshooting Methods

FIGURE 5-1
Circle the Wagons—Single Box Example

FIGURE 5-2
Circle the Wagons—Multiple Box Example (courtesy of Control Magazine)

Mostia2005.book Page 62 Wednesday, October 12, 2005 1:25 PM

Troubleshooting 63

5.6 TRAPPING
Sometimes the event that causes the problem is not alarmed, or is a

transient, or happens so fast the system cannot catch it. This is somewhat
like having a mouse in your house. You generally cannot see it, but you
can see what it has done. How do you catch the mouse? You set a trap.

In sophisticated systems, you may have the ability to set additional
alarms or identify trends to help track down the cause of the problem. For
less sophisticated systems, you may have to use external test equipment or
build a trap (see Figure 5-3). Power monitors such as the Dranetz 658 (see
Figure 5-4) are often used for power problems. A storage scope may also
be used to trap transients. Portable data loggers can be connected to
monitor variables over time and dump the results into a computer, where
the information can be graphed or evaluated. Examples of these include
the AEMC Simple Logger, which can monitor voltage, current, or
temperature, or the HOBO series from Onset Computer Corporation,
which can log several different variables.

FIGURE 5-3
Example of a Signal Trap (courtesy of Dranetz BMI)

FIGURE 5-4
Dranetz Model 658 (courtesy of Dranetz BMI)

Mostia05-Ch05.fm Page 63 Wednesday, October 12, 2005 1:29 PM

64 Other Troubleshooting Methods

If software is involved, you may have to build software traps that
involve additional logic or code to detect the transient or bug. In programs
that use languages like FORTRAN or BASIC, a debugger may be
available, or you can add print statements to print out intermediate values
to detect the problem. If you are the programmer, consider putting in
diagnostic print statements and having a software switch or switches turn
them on and then print the results to a log file. You can use multiple levels
of diagnostics with different switches to trap in different places.

5.7 COMPLEX TO SIMPLE METHOD
Many control loops and systems may have different levels of

operation or complexity with varying levels of sophistication. One
troubleshooting method is to break systems down from complex to
simple. This involves finding the simple parts that function to make the
whole. Once you find the simplest non-functioning “part,” you can
evaluate the non-functioning part or, if necessary, you can start at a simple
known good part and “rebuild” the system until you can find the
problem.

A common example of this is a varying or oscillating control loop. By
placing the control loop in manual (moving from automatic control
[complex] to manual control [simple]), one can determine if the automatic
part of the system (commonly the tuning) is causing the problem or if the
problem is being caused by the process or other external inputs. Another
example is a cascade loop where you have a master loop and a slave loop.
Cascade loops are commonly used to isolate variations in the slave loop
measured variable from causing variations in the master loop measured
variable (the desired control variable). Breaking down this kind of loop
involves breaking the cascade by placing the master loop in manual or
breaking the loop at the slave controller to see if the problem goes away,
which can tell you which loop or if the process is causing the problem.

Computer control, either cascade or direct digital control, can be
troubleshot sometimes by breaking the computer link, though this may be
done for you as it is typically the first thing an operator does when he has
a control problem in this type of system.

Hierarchical systems are another type of system that can be
sometimes troubleshot using this method by isolating the different
hierarchical levels from each other and reconnecting to find the problem.

Another example of this method is breaking down a complex system
into sub-units that have defined inputs and outputs and verifying each
sub-unit’s functionality. A sub-unit can typically be broken down into a
black box representation as shown in Figure 5-5.

Mostia2005.book Page 64 Wednesday, October 12, 2005 1:25 PM

